A Class of Reconstructed Discontinuous Galerkin Methods in Computational Fluid Dynamics
نویسندگان
چکیده
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.
منابع مشابه
Discontinuous Galerkin Methods for Convection-Dominated Problems
In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the m...
متن کاملFinal Report of NASA Langley Grant NCC1-01035 Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows
methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present...
متن کاملHigh Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD
In recent years high order numerical methods have been widely used in computational uid dynamics (CFD), to e ectively resolve complex ow features using meshes which are reasonable for today's computers. In this paper we review and compare three types of high order methods being used in CFD, namely the weighted essentially non-oscillatory (WENO) nite di erence methods, the WENO nite volume metho...
متن کاملHigh-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulation on Unstructured Grids
Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. He...
متن کاملDiscontinuous Galerkin methods
This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience.We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another co...
متن کامل